
IJDCST @Oct-Nov-2015, Issue- V-3, I-7, SW-01
ISSN-2320-7884 (Online)
ISSN-2321-0257 (Print)

1 www.ijdcst.com

 A Proactive Approach to Check the Health of Network

Zarina Begum1, Sayeed Yasin2

1 M.Tech (CSE), Nimra College of Engineering & Technology, A.P., India.

2Head of the Department, Dept. of Computer Science & Engineering, Nimra College of Engineering & Technology, A.P.,

India.

Abstract— Of late there is a mammoth increase in

networks, and facing insurmountable complexities.

Yet administrators rely on basic tools such as ping and

traceroute to debug problems. We propose an

automated and systematic approach for testing and

debugging networks called “Automatic Test Packet

Generation” (ATPG). ATPG reads router

configurations and generates a device-independent

model. The model is used to generate a minimum set

of test packets to (minimally) exercise every link in

the network or (maximally) exercise every rule in the

network. Test packets are sent periodically, and

detected failures trigger a separate mechanism to

localize the fault. ATPG can detect both functional

(e.g., incorrect firewall rule) and performance

problems (e.g., congested queue). ATPG complements

but goes beyond earlier work in static checking (which

cannot detect live-ness or performance faults) or fault

localization (which only localize faults given live-ness

results). We describe our prototype ATPG

implementation and results on two real-world data

sets: Stanford University’s backbone network and

Internet2. We find that a small number of test packets

suffices to test all rules in these networks: For

example, 4000 packets can cover all rules in Stanford

backbone network, while 54 are enough to cover all

links. Sending 4000 test packets 10 times per second

consumes less than 1% of link capacity. ATPG code

and the data sets are publicly available.

Keywords — Data plane analysis, network

troubleshooting, test packet generation.

I. INTRODUCTION

Networks are becoming larger and larger. And it is

extremely hard to debug the problems emerged in

networks. Every day, network engineers wrestle with

router misconfigurations, fiber cuts, faulty interfaces,

mislabeled cables, software bugs, intermittent links,

and a myriad other reasons that cause networks to

misbehave or fail completely. Network engineers hunt

down bugs using the most basic tools (e.g., ping,

traceroute, SNMP, and tcpdump) and track down root

causes using a combination of accrued wisdom and

intuition. Debugging networks is only becoming

harder as networks are getting bigger (modern data

centers may contain 10 000 switches, a campus

network may serve 50 000 users, a 100-Gb/s long-haul

link may carry 100 000 flows) and are getting more

complicated (with over 6000 RFCs, router software is

based on millions of lines of source code, and network

chips often contain billions of gates). It is a small

wonder that network engineers have been labeled

“masters of complexity” [1]. Consider two examples.

Example 1: Suppose a router with a faulty line card

starts dropping packets silently. Alice, who

administers 100 routers, receives a ticket from several

unhappy users complaining about connectivity. First,

Alice examines each router to see if the configuration

was changed recently and concludes that the

configuration was untouched. Next, Alice uses her

knowledge of the topology to triangulate the faulty

device with ping and traceroute. Finally, she calls a

colleague to replace the line card.

IJDCST @Oct-Nov-2015, Issue- V-3, I-7, SW-01
ISSN-2320-7884 (Online)
ISSN-2321-0257 (Print)

2 www.ijdcst.com

Example 2: Suppose that video traffic is mapped to a

specific queue in a router, but packets are dropped

because the token bucket rate is too low. It is not at all

clear how Alice can track down such a performance

fault using ping and traceroute.

Troubleshooting a network is difficult for three

reasons. First, the forwarding state is distributed

across multiple routers and firewalls and is defined by

their forwarding tables, filter rules, and other

configuration parameters. Second, the forwarding state

is hard to observe because it typically requires

manually logging into every box in the network.

Third, there are many different programs, protocols,

and humans updating the forwarding state

simultaneously. When Alice uses ping and traceroute,

she is using a crude lens to examine the current

forwarding state for clues to track down the failure.

Figure 1 Static versus dynamic checking

Fig. 1 is a simplified view of network state. At the

bottom of the figure is the forwarding state used to

forward each packet, consisting of the L2 and L3

forwarding information base (FIB), access control

lists, etc. The forwarding state is written by the control

plane (that can be local or remote as in the SDN model

[1]) and should correctly implement the network

administrator’s policy. Examples of the policy

include: “Security group X is isolated from security

Group Y,” “Use OSPF for routing,” and “Video traffic

should receive at least 1 Mb/s.” We can think of the

controller compiling the policy (A) into device-

specific configuration files (B), which in turn

determine the forwarding behavior of each packet (C).

To ensure the network behaves as designed, all three

steps should remain consistent at all times, i.e., A = B

= C. In addition, the topology, shown to the bottom

right in the figure, should also satisfy a set of liveness

properties L. Minimally L, requires that sufficient

links and nodes are working; if the control plane

specifies that a laptop can access a server, the desired

outcome can fail if links fail. L can also specify

performance guarantees that detect flaky links.

Recently, researchers have proposed tools to check

that A = B, enforcing consistency between policy and

the configuration [2]. While these approaches can find

(or prevent) software logic errors in the control plane,

they are not designed to identify liveness failures

caused by failed links and routers, bugs caused by

faulty router hardware or software, or performance

problems caused by network congestion. Such failures

require checking L for and whether B = C. Alice’s

first problem was with L (link not working), and her

second problem was with B = C (low level token

bucket state not reflecting policy for video

bandwidth).

The main contribution of this paper is what we call an

Automatic Test Packet Generation (ATPG) framework

that automatically generates a minimal set of packets

to test the live-ness of the underlying topology and the

congruence between data plane state and configuration

specifications. The tool can also automatically

generate packets to test performance assertions such as

packet latency. In Example 1, instead of Alice

manually deciding which ping packets to send, the

tool does so periodically on her behalf. In Example 2,

the tool determines that it must send packets with

certain headers to “exercise” the video queue, and then

determines that these packets are being dropped.

ATPG detects and diagnoses errors by independently

and exhaustively testing all forwarding entries,

firewall rules, and any packet processing rules in the

IJDCST @Oct-Nov-2015, Issue- V-3, I-7, SW-01
ISSN-2320-7884 (Online)
ISSN-2321-0257 (Print)

3 www.ijdcst.com

network. In ATPG, test packets are generated

algorithmically from the device configuration files and

FIBs, with the minimum number of packets required

for complete coverage. Test packets are fed into the

network so that every rule is exercised directly from

the data plane. Since ATPG treats links just like

normal forwarding rules, its full coverage guarantees

testing of every link in the network. It can also be

specialized to generate a minimal set of packets that

merely test every link for network liveness. At least in

this basic form, we feel that ATPG or some similar

technique is fundamental to networks: Instead of

reacting to failures, many network operators such as

Internet2 [3] proactively check the health of their

network using pings between all pairs of sources.

However, all-pairs ping does not guarantee testing of

all links and has been found to be un-scalable for large

networks such as PlanetLab [4].

Organizations can customize ATPG to meet their

needs; for example, they can choose to merely check

for network liveness (link cover) or check every rule

(rule cover) to ensure security policy. ATPG can be

customized to check only for reachability or for

performance as well. ATPG can adapt to constraints

such as requiring test packets from only a few places

in the network or using special routers to generate test

packets from every port. ATPG can also be tuned to

allocate more test packets to exercise more critical

rules. For example, a healthcare network may dedicate

more test packets to Firewall rules to ensure HIPPA

compliance.

II. OUR SYSTEM

Based on the network model, our system generates the

minimal number of test packets so that every

forwarding rule in the network is exercised and

covered by at least one test packet. When an error is

detected, our system uses a fault localization

algorithm to determine the failing rules or links.

Figure 2 System Block diagram

Fig. 2 is a block diagram of the ATPG system. The

system first collects all the forwarding state from the

network (step 1). This usually involves reading the

FIBs, ACLs, and config files, as well as obtaining the

topology. ATPG uses Header Space Analysis [5] to

compute reachability between all the test terminals all

rules (step 2). The result is then used by the test packet

selection algorithm to compute a minimal set of test

packets that can test (step 3). These packets will be

sent periodically by the test terminals (step 4). If an

error is detected, the fault localization algorithm is

invoked to narrow down the cause of the error (step

5). While steps 1 and 2 are described in [5], steps 3–5

are new.

A. Test Packet Generation

Algorithm: We assume a set of test terminals in the

network can send and receive test packets. Our goal is

to generate a set of test packets to exercise every rule

in every switch function, so that any fault will be

observed by at least one test packet. This is analogous

to software test suites that try to test every possible

branch in a program. The broader goal can be limited

to testing every link or every queue.

When generating test packets, ATPG must respect two

key constraints: 1) Port: ATPG must only use test

terminals that are available; 2)Header: ATPG must

only use headers that each test terminal is permitted to

IJDCST @Oct-Nov-2015, Issue- V-3, I-7, SW-01
ISSN-2320-7884 (Online)
ISSN-2321-0257 (Print)

4 www.ijdcst.com

send. For example, the network administrator may

only allow using a specific set of VLANs.

B. Fault Localization

We divide faults into two categories: action faults and

match faults. An action fault occurs when every

packet matching the rule is processed incorrectly.

Examples of action faults include unexpected packet

loss, a missing rule, congestion, and mis-wiring. On

the other hand, match faults are harder to detect

because they only affect some packets matching the

rule: for example, when a rule matches a header it

should not, or when a rule misses a header it should

match. Match faults can only be detected by more

exhaustive sampling such that at least one test packet

exercises each faulty region. For example, if a TCAM

bit is supposed to be , but is “stuck at 1,” then all

packets with a 0 in the corresponding position will not

match correctly. Detecting this error requires at least

two packets to exercise the rule: one with a 1 in this

position, and the other with a 0.

III. IMPLEMENTATION

We implemented a prototype system to automatically

parse router configurations and generate a set of test

packets for the network. The code is publicly available

[1].

A. Test Packet Generator

The test packet generator, written in Python, contains

a Cisco IOS configuration parser and a Juniper Junos

parser. The dataplane information, including router

configurations, FIBs, MAC learning tables, and

network topologies, is collected and parsed through

the command line interface (Cisco IOS) or XML files

(Junos). The generator then uses the Hassel [6] header

space analysis library to construct switch and topology

functions.

All-pairs reachability is computed using the multi-

process parallel-processing module shipped with

Python. Each process considers a subset of the test

ports and finds all the reachable ports from each one.

After reachability tests are complete, results are

collected, and the master process executes the Min-

Set-Cover algorithm. Test packets and the set of tested

rules are stored in a SQLite database.

B. Network Monitor

The network monitor assumes there are special test

agents in the network that are able to send/receive test

packets. The network monitor reads the database and

constructs test packets and instructs each agent to send

the appropriate packets. Currently, test agents separate

test packets by IP Proto field and TCP/UDP port

number, but other fields, such as IP option, can also be

used. If some of the tests fail, the monitor selects

additional test packets from reserved packets to

pinpoint the problem. The process repeats until the

fault has been identified. The monitor uses JSON to

communicate with the test agents, and uses SQLite’s

string matching to lookup test packets efficiently.

C. Alternate Implementations

Our prototype was designed to be minimally invasive,

requiring no changes to the network except to add

terminals at the edge. In networks requiring faster

diagnosis, the following extensions are possible.

Cooperative Routers: A new feature could be added to

switches/routers, so that a central ATPG system can

instruct a router to send/receive test packets. In fact,

for manufacturing testing purposes, it is likely that

almost every commercial switch/router can already do

this; we just need an open interface to control them.

SDN-Based Testing: In a software defined network

(SDN) such as OpenFlow [27], the controller could

directly instruct the switch to send test packets and to

detect and forward received test packets to the control

plane. For performance testing, test packets need to be

time-stamped at the routers.

IV. RELATED WORK

IJDCST @Oct-Nov-2015, Issue- V-3, I-7, SW-01
ISSN-2320-7884 (Online)
ISSN-2321-0257 (Print)

5 www.ijdcst.com

We are unaware of earlier techniques that

automatically generate test packets from

configurations. The closest related works we know of

are offline tools that check invariants in networks. In

the control plane, NICE [7] attempts to exhaustively

cover the code paths symbolically in controller

applications with the help of simplified switch/host

models. In the data plane, Anteater [8] models

invariants as Boolean satisfiability problems and

checks them against configurations with a SAT solver.

Header Space Analysis [5] uses a geometric model to

check reachability, detect loops, and verify slicing.

Recently, SOFT [9] was proposed to verify

consistency between different OpenFlow agent

implementations that are responsible for bridging

control and data planes in the SDN context. ATPG

complements these checkers by directly testing the

data plane and covering a significant set of dynamic or

performance errors that cannot otherwise be captured.

End-to-end probes have long been used in network

fault diagnosis in work such as [10]. Recently, mining

low-quality, unstructured data, such as router

configurations and network tickets, has attracted

interest. By contrast, the primary contribution of

ATPG is not fault localization, but determining a

compact set of end-to-end measurements that can

cover every rule or every link. The mapping between

Min-Set-Cover and network monitoring has been

previously explored in [3] and [5]. ATPG improves

the detection granuality to the rule level by employing

router configuration and data plane information.

Furthermore, ATPG is not limited to liveness testing,

but can be applied to checking higher level properties

such as performance.

Our work is closely related to work in programming

languages and symbolic debugging. We made a

preliminary attempt to use KLEE [11] and found it to

be 10 times slower than even the un-optimized header

space framework. We speculate that this is

fundamentally because in our framework we directly

simulate the forward path of a packet instead of

solving constraints using an SMT solver. However,

more work is required to understand the differences

and potential opportunities.

V. CONCLUSION

 Testing liveness of a network is a fundamental

problem for ISPs and large data center operators.

Sending probes between every pair of edge ports is

neither exhaustive nor scalable [30]. It suffices to find

a minimal set of end-to-end packets that traverse each

link. However, doing this requires a way of

abstracting across device specific configuration files

(e.g., header space), generating headers and the links

they reach (e.g., all-pairs reachability), and finally

determining a minimum set of test packets (Min-Set-

Cover). Even the fundamental problem of

automatically generating test packets for efficient

liveness testing requires techniques akin to ATPG.

Network managers today use primitive tools such as

ping and traceroute. Our survey results indicate that

they are eager for more sophisticated tools. Other

fields of engineering indicate that these desires are not

unreasonable: For example, both the ASIC and

software design industries are buttressed by billion-

dollar tool businesses that supply techniques for both

static (e.g., design rule) and dynamic (e.g., timing)

verification. In fact, many months after we built and

named our system, we discovered to our surprise that

ATPG was a well-known acronym in hardware chip

testing, where it stands for Automatic Test Pattern

Generation [2]. We hope network ATPG will be

equally useful for automated dynamic testing of

production networks.

IJDCST @Oct-Nov-2015, Issue- V-3, I-7, SW-01
ISSN-2320-7884 (Online)
ISSN-2321-0257 (Print)

6 www.ijdcst.com

REFERENCES

[1] S. Shenker, “The future of networking, and the

past of protocols,” 2011 [Online].Available:

http://opennetsummit.org/archives/oct11/shenkertue.

Pdf

[2] M. Canini,D.Venzano, P. Peresini,D.Kostic, and J.

Rexford, “A NICE way to test OpenFlow

applications,” in Proc. NSDI, 2012, pp. 10–10.

[3] Internet2, Ann Arbor, MI, USA, “The Internet2

observatory data collections,” [Online]. Available:

http://www.internet2.edu/observatory/ archive/data-

collections.html

[4] H. Weatherspoon, “All-pairs ping service for

PlanetLab ceased,” 2005 [Online]. Available:

http://lists.planet-lab.org/pipermail/users/2005-

July/001518.html

[5] P. Kazemian, G. Varghese, and N. McKeown,

“Header space analysis: Static checking for networks,”

in Proc. NSDI, 2012, pp. 9–9.

[6] “Hassel, the Header Space Library,” [Online].

Available: https://bitbucket. org/peymank/hassel-

public/

[7] M. Canini,D.Venzano, P. Peresini,D.Kostic, and J.

Rexford, “A NICE way to test OpenFlow

applications,” in Proc. NSDI, 2012, pp. 10–10.

[8] H. Mai, A. Khurshid, R. Agarwal, M. Caesar, P. B.

Godfrey, and S. T. King, “Debugging the data plane

with Anteater,” Comput. Commun

Rev., vol. 41, no. 4, pp. 290–301, Aug. 2011.

[9] M. Kuzniar, P. Peresini, M. Canini, D. Venzano,

and D. Kostic, “A SOFT way for OpenFlow switch

interoperability testing,” in Proc ACM CoNEXT,

2012, pp. 265–276.

[10] N. Duffield, F. L. Presti, V. Paxson, and D.

Towsley, “Inferring link loss using striped unicast

probes,” in Proc. IEEE INFOCOM, 2001, vol. 2, pp.

915–923.

[11] C. Cadar, D. Dunbar, and D. Engler, “Klee:

Unassisted and automatic generation of high-coverage

tests for complex systems programs,” in Proc. OSDI,

Berkeley, CA, USA, 2008, pp. 209–224.

Authors:

Student Guide

