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Abstract— Of late there is a mammoth increase in 

networks, and facing insurmountable complexities. 

Yet administrators rely on basic tools such as ping and 

traceroute to debug problems. We propose an 

automated and systematic approach for testing and 

debugging networks called “Automatic Test Packet 

Generation” (ATPG). ATPG reads router 

configurations and generates a device-independent 

model. The model is used to generate a minimum set 

of test packets to (minimally) exercise every link in 

the network or (maximally) exercise every rule in the 

network. Test packets are sent periodically, and 

detected failures trigger a separate mechanism to 

localize the fault. ATPG can detect both functional 

(e.g., incorrect firewall rule) and performance 

problems (e.g., congested queue). ATPG complements 

but goes beyond earlier work in static checking (which 

cannot detect live-ness or performance faults) or fault 

localization (which only localize faults given live-ness 

results). We describe our prototype ATPG 

implementation and results on two real-world data 

sets: Stanford University’s backbone network and 

Internet2. We find that a small number of test packets 

suffices to test all rules in these networks: For 

example, 4000 packets can cover all rules in Stanford 

backbone network, while 54 are enough to cover all 

links. Sending 4000 test packets 10 times per second 

consumes less than 1% of link capacity. ATPG code 

and the data sets are publicly available.  

 

Keywords — Data plane analysis, network 

troubleshooting, test packet generation. 

I. INTRODUCTION 

Networks are becoming larger and larger. And it is 

extremely hard to debug the problems emerged in 

networks. Every day, network engineers wrestle with 

router misconfigurations, fiber cuts, faulty interfaces, 

mislabeled cables, software bugs, intermittent links, 

and a myriad other reasons that cause networks to 

misbehave or fail completely. Network engineers hunt 

down bugs using the most basic tools (e.g., ping, 

traceroute, SNMP, and tcpdump ) and track down root 

causes using a combination of accrued wisdom and 

intuition. Debugging networks is only becoming 

harder as networks are getting bigger (modern data 

centers may contain 10 000 switches, a campus 

network may serve 50 000 users, a 100-Gb/s long-haul 

link may carry 100 000 flows) and are getting more 

complicated (with over 6000 RFCs, router software is 

based on millions of lines of source code, and network 

chips often contain billions of gates). It is a small 

wonder that network engineers have been labeled 

“masters of complexity” [1]. Consider two examples. 

Example 1: Suppose a router with a faulty line card 

starts dropping packets silently. Alice, who 

administers 100 routers, receives a ticket from several 

unhappy users complaining about connectivity. First, 

Alice examines each router to see if the configuration 

was changed recently and concludes that the 

configuration was untouched. Next, Alice uses her 

knowledge of the topology to triangulate the faulty 

device with ping and traceroute. Finally, she calls a 

colleague to replace the line card. 
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Example 2: Suppose that video traffic is mapped to a 

specific queue in a router, but packets are dropped 

because the token bucket rate is too low. It is not at all 

clear how Alice can track down such a performance 

fault using ping and traceroute. 

Troubleshooting a network is difficult for three 

reasons. First, the forwarding state is distributed 

across multiple routers and firewalls and is defined by 

their forwarding tables, filter rules, and other 

configuration parameters. Second, the forwarding state 

is hard to observe because it typically requires 

manually logging into every box in the network. 

Third, there are many different programs, protocols, 

and humans updating the forwarding state 

simultaneously. When Alice uses ping and traceroute, 

she is using a crude lens to examine the current 

forwarding state for clues to track down the failure. 

 

Figure 1 Static versus dynamic checking 

Fig. 1 is a simplified view of network state. At the 

bottom of the figure is the forwarding state used to 

forward each packet, consisting of the L2 and L3 

forwarding information base (FIB), access control 

lists, etc. The forwarding state is written by the control 

plane (that can be local or remote as in the SDN model 

[1]) and should correctly implement the network 

administrator’s policy. Examples of the policy 

include: “Security group X is isolated from security 

Group Y,” “Use OSPF for routing,” and “Video traffic 

should receive at least 1 Mb/s.” We can think of the 

controller compiling the policy (A) into device-

specific configuration files (B), which in turn 

determine the forwarding behavior of each packet (C). 

To ensure the network behaves as designed, all three 

steps should remain consistent at all times, i.e., A = B 

= C. In addition, the topology, shown to the bottom 

right in the figure, should also satisfy a set of liveness 

properties L. Minimally L, requires that sufficient 

links and nodes are working; if the control plane 

specifies that a laptop can access a server, the desired 

outcome can fail if links fail. L can also specify 

performance guarantees that detect flaky links. 

Recently, researchers have proposed tools to check 

that A = B, enforcing consistency between policy and 

the configuration [2]. While these approaches can find 

(or prevent) software logic errors in the control plane, 

they are not designed to identify liveness failures 

caused by failed links and routers, bugs caused by 

faulty router hardware or software, or performance 

problems caused by network congestion. Such failures 

require checking L for and whether B = C. Alice’s 

first problem was with L (link not working), and her 

second problem was with B = C (low level token 

bucket state not reflecting policy for video 

bandwidth). 

The main contribution of this paper is what we call an 

Automatic Test Packet Generation (ATPG) framework 

that automatically generates a minimal set of packets 

to test the live-ness of the underlying topology and the 

congruence between data plane state and configuration 

specifications. The tool can also automatically 

generate packets to test performance assertions such as 

packet latency. In Example 1, instead of Alice 

manually deciding which ping packets to send, the 

tool does so periodically on her behalf. In Example 2, 

the tool determines that it must send packets with 

certain headers to “exercise” the video queue, and then 

determines that these packets are being dropped. 

ATPG detects and diagnoses errors by independently 

and exhaustively testing all forwarding entries, 

firewall rules, and any packet processing rules in the 
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network. In ATPG, test packets are generated 

algorithmically from the device configuration files and 

FIBs, with the minimum number of packets required 

for complete coverage. Test packets are fed into the 

network so that every rule is exercised directly from 

the data plane. Since ATPG treats links just like 

normal forwarding rules, its full coverage guarantees 

testing of every link in the network. It can also be 

specialized to generate a minimal set of packets that 

merely test every link for network liveness. At least in 

this basic form, we feel that ATPG or some similar 

technique is fundamental to networks: Instead of 

reacting to failures, many network operators such as 

Internet2 [3] proactively check the health of their 

network using pings between all pairs of sources. 

However, all-pairs ping does not guarantee testing of 

all links and has been found to be un-scalable for large 

networks such as PlanetLab [4]. 

Organizations can customize ATPG to meet their 

needs; for example, they can choose to merely check 

for network liveness (link cover) or check every rule 

(rule cover) to ensure security policy. ATPG can be 

customized to check only for reachability or for 

performance as well. ATPG can adapt to constraints 

such as requiring test packets from only a few places 

in the network or using special routers to generate test 

packets from every port. ATPG can also be tuned to 

allocate more test packets to exercise more critical 

rules. For example, a healthcare network may dedicate 

more test packets to Firewall rules to ensure HIPPA 

compliance. 

II. OUR SYSTEM 

Based on the network model, our system generates the 

minimal number of test packets so that every 

forwarding rule in the network is exercised and 

covered by at least one test packet. When an error is 

detected, our system uses a fault localization 

algorithm to determine the failing rules or links. 

 

 

Figure 2 System Block diagram 

Fig. 2 is a block diagram of the ATPG system. The 

system first collects all the forwarding state from the 

network (step 1). This usually involves reading the 

FIBs, ACLs, and config files, as well as obtaining the 

topology. ATPG uses Header Space Analysis [5] to 

compute reachability between all the test terminals all 

rules (step 2). The result is then used by the test packet 

selection algorithm to compute a minimal set of test 

packets that can test (step 3). These packets will be 

sent periodically by the test terminals (step 4). If an 

error is detected, the fault localization algorithm is 

invoked to narrow down the cause of the error (step 

5). While steps 1 and 2 are described in [5], steps 3–5 

are new. 

A. Test Packet Generation 

Algorithm: We assume a set of test terminals in the 

network can send and receive test packets. Our goal is 

to generate a set of test packets to exercise every rule 

in every switch function, so that any fault will be 

observed by at least one test packet. This is analogous 

to software test suites that try to test every possible 

branch in a program. The broader goal can be limited 

to testing every link or every queue. 

When generating test packets, ATPG must respect two 

key constraints: 1) Port: ATPG must only use test 

terminals that are available; 2)Header: ATPG must 

only use headers that each test terminal is permitted to 
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send. For example, the network administrator may 

only allow using a specific set of VLANs. 

B. Fault Localization 

We divide faults into two categories: action faults and 

match faults. An action fault occurs when every 

packet matching the rule is processed incorrectly. 

Examples of action faults include unexpected packet 

loss, a missing rule, congestion, and mis-wiring. On 

the other hand, match faults are harder to detect 

because they only affect some packets matching the 

rule: for example, when a rule matches a header it 

should not, or when a rule misses a header it should 

match. Match faults can only be detected by more 

exhaustive sampling such that at least one test packet 

exercises each faulty region. For example, if a TCAM 

bit is supposed to be , but is “stuck at 1,” then all 

packets with a 0 in the corresponding position will not 

match correctly. Detecting this error requires at least 

two packets to exercise the rule: one with a 1 in this 

position, and the other with a 0. 

III. IMPLEMENTATION 

We implemented a prototype system to automatically 

parse router configurations and generate a set of test 

packets for the network. The code is publicly available 

[1]. 

A. Test Packet Generator 

The test packet generator, written in Python, contains 

a Cisco IOS configuration parser and a Juniper Junos 

parser. The dataplane information, including router 

configurations, FIBs, MAC learning tables, and 

network topologies, is collected and parsed through 

the command line interface (Cisco IOS) or XML files 

(Junos). The generator then uses the Hassel [6] header 

space analysis library to construct switch and topology 

functions.  

All-pairs reachability is computed using the multi-

process parallel-processing module shipped with 

Python. Each process considers a subset of the test 

ports and finds all the reachable ports from each one. 

After reachability tests are complete, results are 

collected, and the master process executes the Min- 

Set-Cover algorithm. Test packets and the set of tested 

rules are stored in a SQLite database. 

B. Network Monitor  

The network monitor assumes there are special test 

agents in the network that are able to send/receive test 

packets. The network monitor reads the database and 

constructs test packets and instructs each agent to send 

the appropriate packets. Currently, test agents separate 

test packets by IP Proto field and TCP/UDP port 

number, but other fields, such as IP option, can also be 

used. If some of the tests fail, the monitor selects 

additional test packets from reserved packets to 

pinpoint the problem. The process repeats until the 

fault has been identified. The monitor uses JSON to 

communicate with the test agents, and uses SQLite’s 

string matching to lookup test packets efficiently. 

C. Alternate Implementations 

Our prototype was designed to be minimally invasive, 

requiring no changes to the network except to add 

terminals at the edge. In networks requiring faster 

diagnosis, the following extensions are possible. 

Cooperative Routers: A new feature could be added to 

switches/routers, so that a central ATPG system can 

instruct a router to send/receive test packets. In fact, 

for manufacturing testing purposes, it is likely that 

almost every commercial switch/router can already do 

this; we just need an open interface to control them.  

SDN-Based Testing: In a software defined network 

(SDN) such as OpenFlow [27], the controller could 

directly instruct the switch to send test packets and to 

detect and forward received test packets to the control 

plane. For performance testing, test packets need to be 

time-stamped at the routers. 

IV. RELATED WORK 
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We are unaware of earlier techniques that 

automatically generate test packets from 

configurations. The closest related works we know of 

are offline tools that check invariants in networks. In 

the control plane, NICE [7] attempts to exhaustively 

cover the code paths symbolically in controller 

applications with the help of simplified switch/host 

models. In the data plane, Anteater [8] models 

invariants as Boolean satisfiability problems and 

checks them against configurations with a SAT solver. 

Header Space Analysis [5] uses a geometric model to 

check reachability, detect loops, and verify slicing. 

Recently, SOFT [9] was proposed to verify 

consistency between different OpenFlow agent 

implementations that are responsible for bridging 

control and data planes in the SDN context. ATPG 

complements these checkers by directly testing the 

data plane and covering a significant set of dynamic or 

performance errors that cannot otherwise be captured.  

 

End-to-end probes have long been used in network 

fault diagnosis in work such as [10]. Recently, mining 

low-quality, unstructured data, such as router 

configurations and network tickets, has attracted 

interest. By contrast, the primary contribution of 

ATPG is not fault localization, but determining a 

compact set of end-to-end measurements that can 

cover every rule or every link. The mapping between 

Min-Set-Cover and network monitoring has been 

previously explored in [3] and [5]. ATPG improves 

the detection granuality to the rule level by employing 

router configuration and data plane information. 

Furthermore, ATPG is not limited to liveness testing, 

but can be applied to checking higher level properties 

such as performance. 

Our work is closely related to work in programming 

languages and symbolic debugging. We made a 

preliminary attempt to use KLEE [11] and found it to 

be 10 times slower than even the un-optimized header 

space framework. We speculate that this is 

fundamentally because in our framework we directly 

simulate the forward path of a packet instead of 

solving constraints using an SMT solver. However, 

more work is required to understand the differences 

and potential opportunities. 

     

 

 

V. CONCLUSION 

    Testing liveness of a network is a fundamental 

problem for ISPs and large data center operators. 

Sending probes between every pair of edge ports is 

neither exhaustive nor scalable [30]. It suffices to find 

a minimal set of end-to-end packets that traverse each 

link. However, doing this requires a way of 

abstracting across device specific configuration files 

(e.g., header space), generating headers and the links 

they reach (e.g., all-pairs reachability), and finally 

determining a minimum set of test packets (Min-Set-

Cover).  Even the fundamental problem of 

automatically generating test packets for efficient 

liveness testing requires techniques akin to ATPG.  

Network managers today use primitive tools such as 

ping and traceroute. Our survey results indicate that 

they are eager for more sophisticated tools. Other 

fields of engineering indicate that these desires are not 

unreasonable: For example, both the ASIC and 

software design industries are buttressed by billion- 

dollar tool businesses that supply techniques for both 

static (e.g., design rule) and dynamic (e.g., timing) 

verification. In fact, many months after we built and 

named our system, we discovered to our surprise that 

ATPG was a well-known acronym in hardware chip 

testing, where it stands for Automatic Test Pattern 

Generation [2]. We hope network ATPG will be 

equally useful for automated dynamic testing of 

production networks. 
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